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ABSTRACT 

Experimental evidence obtained by the e l ec t ron  
microprobe, mass spectrometer, and r ad io t r ace r s  
demonstrated t h a t  the  r o l e  of ch lor ide  i n  ho t  s a l t  
s t ress- cor ros ion  cracking of  titanium-aluminum 
a l l o y s  i s  t o  form HC1 through a pyrohydrolytic 
r e ac t i on  between t he  sa l t ,  moisture re ta ined  i n  the 
s a l t  deposi t ,  and the  p ro t ec t i ve  oxide f i l m  on the  
metal.  The HC1 subsequently r e a c t s  w i t h  the metal 
su r face  t o  produce the  metal ch lo r ide  and hydrogen. 
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INTRODUCTION 

The National Aeronautics and Space Administration has spon- 
sored a research  program a t  Savannah River Laboratory t o  develop 
fundamental knowledge about t he  mechanism of hot salt cracking 
of titanium-aluminum a l loys .  These a l l o y s  are important i n  the 
design of supersonic a i r c r a f t  which w i l l  opera te  w i t h  sk in  t e m-  
pera tures  as high as 29OoC (55OoF) while contaminated w i t h  sea 
sal t .  The main emphasis was placed on the  Ti -8Al- lMo- lV a l l o y  
i n  t h i s  work. In  labora tory  tests,  th i s  and similar a l l o y s  are 
suscep t ib l e  t o  hot salt  cracking under the condi t ions t h a t  could 
occur dur ing  opera t ion  of supersonic t r anspor t s .  

The ob jec t ive  of  the work described i n  t h i s  r e p o r t  was t o  
de f ine  the r o l e  of  ch lo r ide  i n  the hot  s a l t  s t ress- cor ros ion  
phenomenon. Previous workers' have proposed that  the salt-metal 
r eac t ions  produce ch lo r ine  gas which causes cracking by loca l-  
ized, s t r e s s- acce l e ra t ed  a t t ack .  I n  con t r a s t ,  s t u d i e s  a t  SRL' 
ind ica ted  tha t  HC1  gas, r a t h e r  than chlor ine,  i s  produced during 
salt-metal reac t ions ,  and tha t  exposure t o  HC1  gas  alone can 
cause cracking of stressed specimens without salt deposi ts .  The 
SRL s t u d i e s  a l s o  showed tha t  some form of ch lo r ide  was s t rongly  
adsorbed on t i tanium a l l o y  specimens tha t  were wetted by aqueous 
s a l t  so lu t ions  a t  room temperature and subsequently r insed  and 
d r i ed  such t h a t  no s a l t  depos i t s  were l e f t  on the surface.  These 
observat ions raised the quest ion of whether the  ch lo r ide  was 
i n i t i a l l y  adsorbed as  equivalent  amounts of  K' and C1-  o r  as  
complex ch lo r ide  ions  i n  the metal oxide f i l m .  

I n  the present  work, the  chlor ide- adsorpt ion phenomenon was 
s tud ied  as a func t ion  of pH of the  i n i t i a l  s a l t  solut ion,  and 
the  salt-metal r eac t ions  were inves t iga t ed  fu r the r .  

Radiotracer  techniques, e l e c t r o n  microprobe ana lys i s  of  
cracked specimens, and mass spectrometr ic  a n a l y s i s  of  v o l a t i l e  
corrosion products were employed i n  these  s tud ies .  The experi-  
ments were success fu l  i n  i d e n t i f y i n g  the  compound that  i n i t i a t e s  
the crack, and have ind ica ted  seve ra l  poss ib le  mechanisms f o r  
the remainder of the ho t  sa l t  s t ress- cracking  process.  
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SUM MA R V  

The r o l e  of ch lo r ide  i n  hot  sa l t  cracking of  Ti- A1 a l l o y s  
i s  to form hydrogen ch lo r ide  by a pyrohydrolytic r e a c t i o n  i n -  
volving the ch lo r ide  s a l t ,  water and probably aluminum oxide. 
The hydrogen ch lo r ide  pene t ra t e s  the p r o t e c t i v e  oxide f i l m  and 
a t t a c k s  the underlying metal, thereby forming a metal ch lor ide  
and hydrogen. 

a )  Chloride i o n  and water are r a p i d l y  adsorbed on the 
sur face  of t i tan ium a l l o y s  during contac t  between 
the a l l o y  sur face  and a s a l t  so lu t ion .  

b )  Hydrogen ch lo r ide  i s  produced a t  elevated tempera- 
t u r e s  by pyrohydrolysis  of sodium chlor ide .  

c )  Only "21, H,O and H, are observed as v o l a t i l e  
products  of  hea t ing  a mixture of t i tan ium a l l o y  
chips  and sal t .  

d )  The ch lo r ide  ion  concent ra t ion  genera l ly  decreases 
toward the t i p  o f  the crack  produced during hot  
sa l t  exposures; sodium i o n  remains a t  the surface.  

e )  The p H  of t h e  sa l t  s o l u t i o n  used to depos i t  the 
salt  on the metal su r face  s t rong ly  a f f e c t s  the rate 
of  c rack  nuclea t ion .  Cracks nuclea te  sooner a t  
higher hydrogen i o n  concentrat ions.  

Although most of the work has been done w i t h  sodium chlor ide ,  
bromide and iodide  salts a l s o  cause hot  s a l t  cracking by similar 
mechanisms, and the r e l a t i v e  s e v e r i t y  of the cracking may simply 
be due t o  t h e  a b i l i t y  of the h a l i d e  t o  pene t ra t e  the oxide and 
r e a c t  w i t h  the underlying metal. Fluoride salts d i d  no t  cause 
cracking i n  these tests. 
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DISCUSSION 

EXPERIMENTAL PROCEDURES 

Preparat ion of Specimens 

The t e s t  specimens were metal lographical ly  polished 3/4- x 
3 -  x O.05O-in. s t r i p s  of duplex-annealed3 Ti-8Al-lMo-lV a l loy .  
The s t r i p s  were mounted i n  4-point loading holders  and stressed 
by bending t o  a sur face- f iber  stress of lo5 p s i  un less  otherwise 
spec i f i ed .  A s tandard beam de f l e c t i on  formula was used t o  cal-  
c u l a t e  

A f e w  drops of a s a l t  so lu t i on  were placed on the  stressed 
sample and then d r i e d  a t  llO°C f o r  1 hour. 
mally heated to 343OC ( 6 5 0 ~ ~ )  i n  a furnace w i t h  an a i r  atmosphere. 

The samples were nor- 

S a l t  so lu t i ons  were prepared from reagent-grade chemicals 
and t h e i r  pH was ad jus ted  w i t h  sodium hydroxide o r  w i t h  a halogen 
ac id  corresponding t o  the anion of s a l t .  Solut ions  of 2 2 N a C 1  o r  
N a 3 6 C 1  were prepared s imi la r ly .  

Specimens f o r  adsorpt ion s t ud i e s  were immersed i n  radio-  
a c t i v e  so lu t ions .  The a c t i v i t y  of these so lu t i ons  w a s  monitored 
and t r a c e r  was added if the a c t i v i t y  decreased by 5%; pH was a l s o  
held constant .  

Elect ron Microprobe Analysis 

A Materials Analysis  Model 400 e l ec t ron  microprobe was used 
t o  determine Na and C1 i n  cracks and adjacent  regions.  X-rays 
were d i f f r a c t e d  with a potassium ac id  phthalate c r y s t a l  f o r  N a  
and a pen t ae ry th r i t o l  c r y s t a l  f o r  C 1 .  Spectrometers were C a l i -  

brated w i t h  carbon-coated sodium ch lor ide  c r y s t a l s .  

Mass Spectrometer Analysis  

A Consolidated Engineering Corp. Model 21-103 mass spect ro-  
meter was used t o  analyze v o l a t i l e  corros ion products tha t  were 
evolved when mixtures of Ti-8Al-lMo-lV a l l o y  and sodium ch lor ide  
were heated i n  a closed glass r eac t i on  vesse l  a t t ached  d i r e c t l y  
t o  the mass spectrometer. The s a l t  so lu t i on  was d r i e d  on the 
t i tanium a l l o y  ch ips  f o r  1 hour a t  l l O ° C .  Chips were used t o  
assure  a high sur face  area/salt  r a t i o .  
r e ac t i on  ve s se l  conta ining the sa l t- coated ch ips  was reduced so  
t h a t  a t  temperature, without a reac t ion ,  the  pressure  would be 1 
atmosphere. Temperature was monitored i n - a  thermocouple w e l l  
i n s e r t ed  i n t o  the chips.  About 2% o f  the gas i n  the r eac t i on  
vesse l  was removed each t i m e  a sample w a s  taken. 
i n  the r eac t i on  vesse l  and on the mass spectrometer were greased 

The p ressure  i n  the  

The stopcocks 



w i t h  "Kel-F"+, a l u b r i c a n t  unattacked by C1, and o t h e r  s t rong  
oxidants .  

Fur ther  d e t a i l s  on specimen prepara t i cn  unique t o  a p a r t i c -  
u l a r  experimental  approach are discussed under Results .  

RESULTS 

Ion Adsorption on Metal l ic  Surfaces 

Sodium and ch lo r ide  ion  adsorpt ion on t h e  su r faces  o f  a 
v a r i e t y  of metals  was s tudied by r a d i o t r a c e r  techniques to dete r-  
mine i f ,  as previously  es tab l i shed  f o r  severa l  titanium-aluminum 
al loys , '  t he  ch lo r ide  ion  (C1-) was p r e f e r e n t i a l l y  adsorbed. 
T e s t  samples were exposed f o r  15 minutes a t  room temperature to 
s o l u t i o n s  of " " N a C 1  or N a 3 " C 1  i n  water, pH 5-6. The exposed 
samples were r insed  i n  flowing ho t  water for one minute and then 
were analyzed f o r  ""Na or 3"Cl by radiocounting techniques. The 
r e s u l t s ,  Table I, showed t h a t  C1- was s e l e c t i v e l y  adsorbed on a l l  
of t h e  metals t e s t e d .  

TABLE I 

Adsorption of Na+  and C 1 -  on Selected Metals 

Surface Adsorption, yg/lO cm" 
Na+ C1- -- Mat e r i a  1 Condi t i c n  

Type 304 S t a i n l e s s  S t e e l  Polished 0.00 12 .0  

Titanium Polished 0.00 12 .0  

Ti-8Al-lMo-lV M i l l  Oxide 0.03 9.4 

Ti-8Al-lMo-lV Polished 0.14 10.0 

Tantalum 

Zircaloy-2 

Platinum 

Oxidized 0.01 10.0 

Oxidized 0.03 8.5 
Oxidized 0:OO 4.5 

* Trademark of  Minnesota Mining and Manufacturing Company, S t .  
Paul, Minnesota. 
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To maintain e l e c t r i c a l  n e u t r a l i t y ,  the charge assoc ia ted  
w i t h  t h e  ch lo r ide  adsorpt ion must be balanced by adsorpt ion of an  
equal pos i t i ve  charge (& s ince  Na+ w a s  not  adsorbed), oxidat ion 
of a c a t i on  i n  the  oxide (e.g. ,  Ti++ t o  Ti+++),  o r  some balancing 
change i n  t he  de f ec t  s t r u c t u r e  o f  the  oxide f i l m .  

Previous s t ud i e s2  had es tab l i shed  t h a t  hydrogen ( 3 H )  was 
adsorbed during t i tanium a l l o y  exposures t o  salt-water so lu t ions ,  
but  i t  was not  c l e a r  i f  the  hydrogen was adsorbed as 3H+ asso-  
c ia ted  with C1- o r  as  'H,O. If t he  hydrogen i o n  was a c t i n g  t o  
n e u t r a l i z e  t he  negat ive  C 1 -  charge, then ch lor ide  adsorpt ion 
should be d i r e c t l y  propor t ional  t o  hydrogen i on  concentra t ion 
and should be a maximum when t h e  hydrogen ion concentra t ion i s  
high ( i . e . ,  pH i s  low). 

Experiments summarized i n  Figure 1 showed tha t  ch lo r ide  
adsorpt ion on metal lographical ly  polished Ti-8Al-lMo-lV samples 
immersed i n  N a 3 6 C 1 - H , 0  s o lu t i ons  immediately a f t e r  pol ishing was 
a maximum i n  near ly  neu t r a l  so lu t i ons  and decreased as t he  pH 
o f  the  so lu t i on  increased or decreased. Samples tha t  were 
exposed t o  a i r  a t  2OoC and 50% r e l a t i v e  humidity overnight  and 
then immersed i n  the  ch lor ide  t r a c e r  so lu t i on  showed a similar 
pH maximum and an o v e r a l l  inc rease  i n  ch lo r ide  adsorpt ion.  This 
inc rease  i n  adsorpt ion was probably due t o  the  inc rease  i n  oxide 
f i lm thickness .  Thus, hydrogen ion adsorpt ion i s  not  the  
mechanism f o r  maintaining charge neutra l i ty ,  and hydrogen was 
adsorbed a s  H20 i n  t he  previous s t ud i e s  a t  room temperature.2 

2.5  I I I I I I I I I 

pH of Solution 

FIG. 1 CHLORIDE ADSORPTION ON SURFACE OF Ti - 8 A l -  1 M o - 1 V  ALLOY 
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The reason f o r  the inc rease  i n  ch lo r ide  adsorpt ion  i n  
approximately n e u t r a l  s o l u t i o n s  was not  c l e a r l y  established. 
However, similar t r ends  i n  c h l o r i d e  adsorpt ion  were noted f o r  
o t h e r  heavi ly  oxidized T i- A 1  a l l o y  samples tha t  r e t a ined  a 
v i s i b l e ,  i n t a c t  oxide throughout the tests. Therefore, one 
poss ib le  mechanism can be*el iminated;  namely, that  the pH effects 
cannot be a t t r i b u t e d  t o  d i s s o l u t i o n  of the oxide f i l m s  i n  t he  
basic or a c i d i c  s o l u t i o n s  and t o  a corresponding decrease i n  
adsorpt ion  on the c l ean  metal sur faces .  

V o l a t i l e  Corrosion Products 

Reactions involving HC1, Cl , ,  HaO, TiC1, and o t h e r  v o l a t i l e  
spec ie s  have been proposed as steps i n  the  ho t  sa l t  cracking 
sequence.' '9  ') 

process,  they should a l s o  be produced when mixtures of t i tan ium 
chips  and N a C l  are heated t o  e levated  temperatures.  To tes t  f o r  
the presence of these species, mixtures of t i tan ium chips  and 
N a C l  were heated t o  260 and 4OO0C 
r e a c t i o n  vesse l s .  Gas samples taken from the vesse l  a f t e r  
var ious  exposure times were analyzed by mass spectroscopy. 
S p e c t r a l  data were c o l l e c t e d  to mass 170 i n  the event  t h a t  TiC1, 
or TiC1, might be observed. However, these  compounds were no t  
expected s ince  t i tan ium ch lo r ides  readi ly  hydrolyze a t  the expo- 
su re  temperature and produce hydrogen and HC1. 

If these spec ies  a r e  involved i n  the  cracking 

(500 and 75OoF) i n  closed 

Only H,O, HC1 and H, were de tec ted  as v o l a t i l e  products as 
shown i n  Table 11. Water w a s  assoc ia ted  w i t h  the NaCl e i t h e r  by 
adsorpt ion  o r  as inc lus ions .  The concent ra t ion  of HC1 was rela- 
t i v e l y  cons tant ,  and increased only s l i g h t l y  w i t h  t i m e ;  the H, 
concent ra t ion  increased markedly, p a r t i c u l a r l y  during t h e  e a r l y  
s t a g e  of exposure, Figure 2. 

TABU2 I1 

V o l a t i l e  Products from 
NaC1-Coated Ti-8Al-lMo-lV Chips 

Cont r ibutors  
Mass V o l a t i l e  t o  Product 
No. Product Mass No. Presence of Product 

2 H2 HZO, HC1 Y e s  
18 H20 - Y e s  
35 c1 H C 1  N o  
36 HC 1 - Yes 
37 C l  H C 1  No 

74 c12 - N o  
70 c12 NO 
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Ti-8AI-1Mo-lV,  NaCl 

20 40 60 80 100 120 
Time, minutes 

FIG. 2 EVOLUTION OF H, AND HCI DURING HOT SALT CORROSION 

Ion  Penet ra t ion  i n t o  Cracks 

The pene t ra t ion  of sodium and ch lo r ide  ions  i n t o  cracks was 
measured by e l e c t r o n  microprobe techniques t o  expla in  t he  r o l e  
of the corros ion  products  i n  h o t - s a l t  cracking. Samples t h a t  
were cracked dur ing  exposures t o  NaCl a t  343OC ( 6 5 0 ~ ~ )  were 
pol ished i n  nonaqueous l u b r i c a n t s  so  t h a t  the crack  c ross  s e c t i o n  
could be scanned by an expanded, 811, e l e c t r o n  beam. Care was 
taken t o  prevent  sodium ch lo r ide  from being forced i n t o  t h e  crack  
during sample preparat ion.  Seven cracks  were examined. Cracks 
were 75p t o  32Op deep. 

The microprobe a n a l y s i s  showed that,  i n  general ,  sodium was 
concentrated a t  the  mouth of the crack  and that ch lo r ide  concen- 
t r a t i o n  decreased from the mouth toward the crack t i p .  A t y p i c a l  
crack and the accompanying sodium and chlor ide  concentrat ion 
p r o f i l e s  are shown i n  Figure 3. These r e s u l t s  showed that chlo-  
r i d e  was pene t ra t ing  the crack i n  some form o the r  than N a C 1 .  Mass 
spectrographic analyses showed HC1, not  Cl,. 

The pene t ra t ion  of ch lo r ide  but  n o t  sodium was supported by 
autoradiographic s t u d i e s  of samples cracked w i t h  2 2 N a C 1  and 
Na3'C1. Samples that  had cracked dur ing  2 weeks exposure a t  
343OC were r insed  i n  HaO, mechanically pol ished t o  remove 5Op 
from the metal surface,  then  autoradiographed. The ch lo r ide  Ion, 
but  no t  sodium, was found concentrated i n  the cracked regions, 
a s  shown i n  Figure 4. 
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Cross Section of Crack 

E lectron Microprobe Scans 
I I 
- 
0 

& 
0 25 50 75 loop 

FIG. 3 VARIATION OF SODIUM AND CHLORIDE CONCENTRATION WITHIN CRACK 
(Hot Salt Stress Cracked Ti -8AI-1Mo-1V) 
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a. Subsurface Crack - Photomicrograph of crack after removal of -5011 of surface metal. 
Original stressed surface exposed to Na36CI for 2 weeks a t  3 4 3 O C  

b. 36CI Autoradiograph - Reveals concentration of chlorides -5Op below original surface 
i n  areas of cracks. Smearing of activity i n  vicinity of cracks i s  probably due to 
dispersion of chloride removed from cracks i n  polishing. 

c. 22Na Autoradiograph - Origi nal surface exposed to 2%aCI for 2 weeks at 343OC.  
No concentration of Na evident 50p below original surface in areas of cracks. 
Tracks are background. 

FIG. 4 AUTORADIOGRAPHS OF STRESS -CORROSION CRACKS 
[Ti - 8A I  -1  Mo - 1V Alloy cracked by radioactive NaCl at 343OC (650°F)] 
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E f f e c t  of Moisture 

Moisture i s  required f o r  the hot  sal t  s t r e s s- co r ros ion  
cracking process.  Hot sa l t  s t r e s s- co r ros ion  cracking of t i t an ium 
a l l o y s  a t  343OC w a s  not  i n i t i a t e d  when the reagents  and metal were 
d r i e d .  I n  the presence of moisture,  cracking was i n i t i a t e d  w i t h  
N a C l  a f te r  80 minutes a t  343OC. 
moisture i n  two i d e n t i c a l  specimens af ter  90 minutes (10 minutes 
af ter  i n i t i a t i o n ) .  The dry system, i n  which the salt  was d r i e d  
3 days a t  343OC, d i d  not crack the metal  even when the tes t  was 
extended t o  10,800 minutes (7 days) .  The moist  system showed 
a t t a c k  and cracking i n  90 minutes. 

Figure 5 shows the e f f e c t  of 

a. Dried Salt Attack u b. Moist Salt Attack 
100 /l 

Both specimens polished, stressed, treated with salt, and heated at 343OC (650OF) for 
90 minutes. Note absence of attack when sa l t  and specimens are maintained in the 
anhydrous state as opposed to the stains and cracks produced in the moist specimen. 

FIG. 5 EFFECT OF MOISTURE ON HOT SALT STRESS-CORROSION CRACKING , 

Cracking i n  Other Halide Sal ts  

Hot sa l t  cracking of  t i t an ium a l l o y s  has genera l ly  been 
ascribed t o  some ch lo r ide  salt ,  although it has been established 
tha t  o t h e r  sodium hal ide sal ts  w i l l  produce less severe cracking.'  
Fur ther  s t u d i e s  of  t h e  e f f e c t  of  ha l ide  i o n  on cracking t i m e  were 
made t o  determine the r o l e  of  the anion i n  c rack  i n i t i a t i o n .  



Table I11 shows the t i m e  requi red  for crack i n i t i a t i o n  i n  samples 
exposed to var ious  hal ide s a l t s  deposi ted from sa tu ra t ed  sa l t  
so lu t ions .  The rate of crack  i n i t i a t i o n  appeared t o  b e  a func t ion  
of the  s i z e  of  the  ha l ide  ion; the e f fec t iveness  of the i o n  i n  
promoting cracking increased  ( i . e . ,  C1> Br> I )  as the s i z e  of the 
ion  decreased. 
but d i d  cause genera l ized  p i t t i n g .  

The f l u o r i d e  d i d  n o t  cause cracking i n  any samples 

The pH of the sa tu ra t ed  sa l t  so lu t ion  t h a t  was appl ied to the  
specimen was a l s o  found to be important;  c rack  i n i t i a t i o n  i n-  
creased w i t h  decreasing pH (Table 111). 
importance of the hydrogen i o n  i n  the cracking process; cracking 
was most rapid when the hydrogen i o n  concent ra t ion  was high. 

T h i s  demonstrates the  

TABLE I11 

Effec t  o f  pH on T i m e  to Cracking 
Caused by Various Dried S a l t s  

pH of Time to pH of  Time to 
Satura ted  Cracking, Adjusted Cracking, 

S a l t  So lu t ion  Temp, 'C min Solu t ion  min 

NaCl 4 . 1  3 43 ( 650°F 1 80 0.5 40 

NaBr 4.7 3 43 ( 650°F 1 150 0.5 75 

Na I 8.9 400 ( 750'F) 150 0.5 75 

NaF 8 . 4  400 ( 7fSO'F) > l 5 , O O O *  5.2 >240* 

SnC1, 2H, 0 0.2 343 (650'F) 10 4.1 30 

SnC1, * 2H, 0 0.2 343 (650'F) 10 0.5 15 

C U C l  3 .4  343 (650'F) 60 0.5 15 

* Specimen d i d  no t  crack; pH could not  be made h ighly  a c i d i c  be- 
cause of  HF a s soc ia t ion .  
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\ ROLE OF CHLORIDE 

The r e a c t i o n  of water with a hydrolyzable sa l t  a t  e leva ted  
temperature i s  termed pyrohydrolysis.  This r e a c t i o n  i s  o f t e n  
used f o r  the a n a l y s i s  of hal ide sal ts  because a v o l a t i l e  spec ie s  
of t h e  halogen i s  formed (e. g.,  HC1, HBr).' Aluminum oxide o r  
vanadium pentoxide are o f t e n  added as a c c e l e r a t o r s  when t h e  sa l t  
i s  d i f f i c u l t  to hydrolyze, as i s  NaC1. 

The experimental  evidence demonstrates that pyrohydrolysis 
occurs  i n  t h e  cracking  process.  The r e q u i s i t e s  f o r  pyrohydrolysis  
are p resen t :  1) heat, 2 )  water, adsorbed o r  present  as inc lus ions  
i n  the N a C 1 ,  3 )  a c c e l e r a t o r s  f o r  d i f f i c u l t y  hydrolyzable salts 
are p resen t  i n  t h e  form of aluminum o r  vanadium oxides i n  the 
p r o t e c t i v e  f i l m  on Ti-8Al-lMo-lV a l loy .  I n  addi t ion ,  H C 1  has been 
shown to be a corros ion  product and moisture w a s  shown to be 
necessary f o r  cracking. 

The remainder of t h e  cracking  sequence tha t  fol lows t h e  a c i d  
a t t a c k  i s  now being inves t iga ted  i n  a companion study. 
The process  may involve a )  p a r t i c i p a t i o n  of  H+ a s  a n  embr i t t l i ng  
agent  (Hydrogen Embritt lement),  b )  the a c t i o n  of C 1 -  or H+ a s  a 
bond weakener (Stress- Sorpt ion Cracking), o r  c )  l oca l i zed  
corros ion  by HC1 a t t a c k  (Electrochemical Mechanism). 
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